

Know Genix Insights No.5.May 2020

COVID 19 Vaccines and Therapies Promise, Prospects, and Perils

COVID 19 Vaccines and Therapies: Promise, Prospects, and Perils

December 2019, will be remembered as one of the major milestones in human history, when a novel coronavirus pneumonia rose from the wet markets of Wuhan, China, where animal-to-human transmission transformed to human-to-human transmission. What followed was a catastrophic sequence of events enveloping global nations it stopped the wheels of global economy bringing it to a grinding halt.

The days that followed changed healthcare; industrial and societal systems in unimagined ways. Millions of views from experts, media and industry overwhelmed global communities. Even as the virus was heading towards peak levels the wheels of commerce chugged along offering survival plans in a Post Covid phase. While millions of dollars were committed to advanced research into therapies and vaccines, the more serious issues of starvation and nutrition emerged to pose further challenges. Debate rages on economic and psychological effects of lockdowns, large scale migration of labour, healthcare practices, malnutrition, efficacy and viability of vaccines in different geographies. In countries like India with low healthcare infrastructure the debate now ranges on how do we save our hospitals to save lives.

This discussion focuses on the promise of some of the most prospective vaccine and therapy platforms; the strategy of companies in fast tracking vaccine and therapies for COVID 19 and more importantly the perils in taking vaccines to the markets without insights into the inherent dynamics of vaccines and immune systems.

The rage of pathogens

While university labs and the industry have been announcing breakthroughs in new vaccines at a pandemic pace, the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and the FDA sounded a cautious note; that there are currently no medications or vaccines proven to be effective for the treatment or prevention of SARS-CoV-2.

Till date here are no specific therapies approved by the U.S. Food and Drug Administration (FDA) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 COVID-19. Several agents are being used under clinical trial and compassionate use protocols based on *in vitro* activity (against SARS-CoV-2 or related viruses) and on limited clinical experience.

Coronaviruses (CoVs) are positive-sense, single-stranded RNA viruses of the family Coronaviridae (subfamily Coronavirinae) that infect a wide host range to produce diseases ranging from common cold to severe/fatal illnesses. The novel virus was initially named "2019-nCoV" which was changed to "SARS-CoV-2" by the Coronavirus Study Group (CSG) of International Committee on Taxonomy of Viruses (ICTV), since it was found to be the sister virus of severe acute respiratory syndrome coronavirus (SARS-CoV).1

Many nations are diverting their best efforts for the implementation of appropriate preventive and control strategies. Neither vaccines nor direct-acting antiviral drugs are available for

the treatment of human and animal coronavirus infections (1). Many efforts have been directed to develop vaccines against human CoV infections in recent decades, but a limiting factor is the degree of cross-protection rendered by these vaccines due to their extensive sequence diversity (2)

Various vaccines, immunotherapeutics, and drug options have been explored during the recent threats of Zika, Ebola, and Nipah viruses6-8 as well as against previous CoVs including SARS- and MERS-CoVs. These valuable options can be exploited for their potency, efficacy, and safety along with expediting other ongoing research. There is a long list of anti-CoV agents, mostly preclinical compounds yet to be evaluated as anti-COVID-19 agents. Some of these agents are in phase III trials for COVID-19, including remdesivir, oseltamivir, ASC09F (HIV protease inhibitor), lopinavir, ritonavir, darunavir, and cobicistat.

While the following drugs were being discussed their efficacy has not been established.

- 1. Chloroquine *In vitro* and limited clinical data suggest potential benefit.
- 2. Hydroxychloroquine In vitro and limited clinical data suggest potential benefit.
- 3. Lopinavir; Ritonavir Role in the treatment of COVID-19 is unclear. Preclinical data suggested potential benefit; however, more recent data has failed to confirm.
- 4. Remdesivir Investigational and available only through expanded access and study protocols; several large clinical trials are underway. Remdesivir showed encouraging results among animals infected with two related coronaviruses, one responsible for severe acute respiratory syndrome (SARS) and another for causing Middle East respiratory syndrome (MERS).
- 5. Azithromycin Used in some protocols based on theoretical mechanism and limited preliminary data as adjunct therapy.
- 6. Tocilizumab Immunomodulating agent used in some protocols based on theoretical mechanism and limited preliminary data as adjunct therapy.
- 7. COVID-19 convalescent plasma Investigational use is being studied.

The major therapeutic drugs: remdesivir, lopinavir/ritonavir are used alone or in combination with interferon- β , convalescent plasma, and mAbs. Nevertheless, before utilizing these drugs for COVID-19 pneumonia patients, clinical efficacy, and safety studies should be conducted.

Some potential treatments aren't aimed at the coronavirus itself but instead will hopefully reduce some of the severe side effects the disease causes, like hyperinflammation and respiratory distress.

Notably, many of the proposed treatments have gone through U.S. Food and Drug Administration (FDA) approval for other uses or are currently going through that process, meaning the route to getting approved for a clinical trial to study their effects on COVID-19 patients is shorter and faster than it would be for a new drug.

Chase is on for the elusive COVID 19 vaccines

The chase was on for therapies and vaccines for the pharmaceutical and vaccine developers to fast track their pipelines for COVID 19. The frenzy of activities continues

unabated. While a few traditional drugs rose to offer some promise it was the holy grail of COVID 19 vaccine that fired the imagination.

The finding that SARS-CoV-2 is transmitted from infected individuals without symptoms together with its ability to cause pandemic disease within a period of weeks, suggests that control of this viral infection will be challenging without the prospect of a vaccine.

The major COVID 19 vaccine development programs revolve around : Whole Virus Vaccines; Sub unit vaccines and Nucleic acid vaccines.

Whole virus vaccines

- a. Janssen (Johnson & Johnson) : Adenovirus-vectored vaccine using AdVac® and PER.C6® technology
- b. Codagenix/Serum Institute of India: Live-attenuated vaccine

Subunit vaccines

- a. University of Queensland/CEPI: Protein-based vaccine using Molecular Clamp platform
- b. Novavax: Recombinant nanoparticle technology
- c. Clover Bipharmaceuticals: S-trimer recombinant protein using Trimer-Tag technology
- d. Baylor College of Medicine, Fudan University, New York Blood Center, Univ Texas Medical Branch: Coronavirus RBD protein-based vaccine
- e. Vaxart: Ora recombinant protein vaccine using VAAST platform

Nucleic acid vaccines

- a. Inovio/Beijing Advaccine Biotechnology Co./CEPI: DNA vaccine (INO-4800, based on INO-4700 MERS vaccine)
- b. Moderna/NIH/CEPI : mRNA vaccine
- c. CureVac/CEPI : mRNA vaccine

Since March 3rd week over 600 Companies, research labs and agencies have announced breakthrough vaccine innovations; most of them yet unsubstantiated. Some of the more promising ones are discussed below.

Moderna Therapeutics, a biotech company based in Cambridge, Mass., has shipped the first tbatches of its COVID-19 vaccine. The vaccine was created just 42 days after the genetic sequence of the COVID_19 virus, called SARS-CoV-2, was released by Chinese researchers in mid-January. The first vials were sent to the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH) in Bethesda, MD, which will ready the vaccine for human testing as early as April.

<u>Moderna's vaccine</u> against COVID-19 was developed in record time because it's based on a relatively new genetic method that does not require growing huge amounts of virus. Instead, the vaccine is packed with mRNA, the genetic material

that comes from DNA and makes proteins. Moderna loads its vaccine with mRNA that codes for the right coronavirus proteins which then get injected into the body. Immune cells in the lymph nodes can process that mRNA and start making the protein in just the right way for other immune cells to recognize and mark them for destruction.

RNA; LNP-encapsulated mRNA (mRNA 1273): The National Institute of Allergy and Infectious Diseases (NIAID) and Moderna's potential vaccine builds on research into the MERS virus. It's a messenger RNA or mRNA vaccine, where a bit of the virus's genetic material gets injected into your muscle. The role of mRNA is to carry genetic information from DNA needed to make proteins. The RNA is packaged in lipid nanoparticles (LNPs), to help effectively deliver it. The mRNA would deliver instructions to cells on how to make proteins to fight the virus. No RNA vaccines have even been approved for human use.

BioNTech and Pfizer Inc. have disclosed additional details of their collaboration to advance candidates from BioNTech's mRNA vaccine program, previously announced on March 17, 2020. The collaboration aims to rapidly advance multiple COVID-19 vaccine candidates into human clinical testing based on BioNTech's proprietary mRNA vaccine platforms, with the objective of ensuring rapid worldwide access to the vaccine, if approved. The collaboration will leverage Pfizer's broad expertise in vaccine research and development, regulatory capabilities, and global manufacturing and distribution network. BioNTech and Pfizer intend to initiate the first clinical trials as early as the end of April 2020, assuming regulatory clearance.

CanSino Biologics is testing a vaccine candidate in healthy adults, the first phase of clinical testing. In 2017, the company, collaborating with the Chinese Academy of Military Medical Sciences' Bioengineering Institute, developed an ebola vaccine. The potential COVID-19 vaccine, AD5-nCoV, is based on the same technology. It's a non-replicating viral vector, so it can infect cells but has been rendered incapable of multiplying. Johnson & Johnson is working on a similar type of vaccine, which will be ready for phase one trials in September.

Status of vaccine development

Coronaviruses caused SARS in the early 2000s and MERS in 2012. The two epidemics were contained before vaccines were created, but some work was started for both which is being leveraged by a few companies to find a vaccine for COVID-19. The Coalition for Epidemic Preparedness Innovations, or CEPI, is an organization helping to accelerate vaccine development. About 42 companies and academic institutions are searching for a COVID-19 vaccine; two in phase-1 clinical trials, and over 40 in preclinical development.

Vaccines for COVID 19 are based on multiple platforms and vaccine developers focus on specific platforms of their expertise. There are 2 candidates in Phase 1 (Table 1) and over 40 in pre-clinical state (Table 2)

Platform	Type of candidate vaccine	Developer	Present status
Non-	Adenovirus Type 5 Vector	CanSino Biological	Phase 1
Replicatin		Inc.	ChiCTR2000030906
g Viral		and Beijing Institute	
Vector		of Biotechnology	
RNA	LNP-encapsulated mRNA	Moderna/NIAID	Phase 1
			NCT04283461

 Table 1: Candidate vaccines in clinical evaluation Phase 1

Table 2: Candidates in Pre-clinical stage

Platform	Type of candidate vaccine	Developer	Present status
DNA	DNA plasmid vaccine	Inovio	Pre-Clinical
	Electroporation device	Pharmaceuticals	
DNA	DNA	Takis/Applied DNA	Pre-Clinical
		Sciences/Evvivax	
DNA	DNA plasmid vaccine	Zydus Cadila	Pre-Clinical
Inactivated	Formaldehyde-inactivated + alum	Sinovac	Pre-Clinical
Live Attenuated Virus	Deoptimized live attanuated vaccines	Codagenix/Serum Institute of India	Pre-Clinical
Non- Replicating Viral Vector	MVA encoded VLP	GeoVax/BravoVax	Pre-Clinical
Non-	Ad26 (alone or with MVA	Janssen	Pre-Clinical
Replicating	boost)	Pharmaceutical	
Viral		Companies	
Vector			
Non- Replicating Viral Vector	ChAdOx1	University of Oxford	Pre-Clinical
Non-	adenovirus-based	Altimmune	Pre-Clinical
Replicating Viral Vector	NasoVAX expressing SARS2-CoV spike protein	Anninune	Tre-Chinear
Non-	Ad5 S (GREVAX TM	Greffex	Pre-Clinical
Replicating	platform)		
Viral			
Vector			
Non-	Oral Vaccine platform	Vaxart	Pre-Clinical
Replicating			
Viral			
Vector			
Protein	Drosophila S2 insect cell	ExpreS2ion	Pre-Clinical
Subunit	expression system VLPs		

Ductoin	S mastein		Dra Clinical
Protein	S protein	WRAIR/USAMRIID	Pre-Clinical
Subunit	~		
Protein	S-Trimer	Clover	Pre-Clinical
Subunit		Biopharmaceuticals	
		Inc./GSK	
Protein	Peptide	Vaxil Bio	Pre-Clinical
Subunit	I I		
Protein	S protein	AJ Vaccines	Pre-Clinical
Subunit	r r		
Protein	Ii-Key peptide	Generex/EpiVax	Pre-Clinical
Subunit			
Protein	S protein	EpiVax/Univ. of	Pre-Clinical
Subunit	5 protein	Georgia	The Chillean
Protein	S protein (baculovirus	Sanofi Pasteur	Pre-Clinical
Subunit	production)	Sanon i asteur	Tre-Clinical
Protein	Full length S trimers/	Novavax	Pre-Clinical
Subunit		INUVAVAX	Fie-Chillean
	nanoparticle + Matrix M		D (1) 1
Protein	gp-96 backbone	Heat Biologics/Univ.	Pre-Clinical
Subunit		Of Miami	
Protein	Molecular clamp stabilized	University of	Pre-Clinical
Subunit	Spike protein	Queensland/GSK	
Protein	S1 or RBD protein	Baylor College of	Pre-Clinical
Subunit		Medicine	
Protein	Subunit protein, plant	iBio/CC-Pharming	Pre-Clinical
Subunit	produced		
Protein	Subunit	VIDO-InterVac,	Pre-Clinical
Subunit		University of	
		Saskatchewan	
Protein	Adjuvanted microsphere	University of	Pre-Clinical
Subunit	peptide	Saskatchewan	
Replicating	Measles Vector	Zydus Cadila	Pre-Clinical
Viral	-		
Vector			
Replicating	Measles Vector	Institute	Pre-Clinical
Viral		Pasteur/Themis/Univ	
Vector		. of Pittsburg Center	
		for Vaccine Research	
Replicating	Horsepox vector expressing	Tonix	Pre-Clinical
Viral	S protein	Pharma/Southern	
Vector	5 protein	Research	
RNA	LNP-encapsulated mRNA	Fudan University/	Pre-Clinical
ININA	1	•	1 IC-CIIIICal
	cocktail encoding VLP	Shanghai JiaoTong	
		University/RNACure	
		Biopharma	
RNA	LNP-encapsulated mRNA	Fudan University/	Pre-Clinical
	encoding RBD	Shanghai JiaoTong	
		University/RNACure	

		Biopharma	
RNA	mRNA	China CDC/Tongji University/Stermina	Pre-Clinical
RNA	mRNA	Arcturus/Duke-NUS	Pre-Clinical
RNA	mRNA	BioNTech/Fosun Pharma/Pfizer	Pre-Clinical
RNA	saRNA	Imperial College London	Pre-Clinical
RNA	mRNA	Curevac	Pre-Clinical
VLP	Plant-derived VLP	Medicago Inc.	Pre-Clinical
Unknown	Unknown	University of Hong Kong	Pre-Clinical
Unknown	Unknown	ImmunoPrecise	Pre-Clinical
Unknown	Unknown	MIGAL Galilee Research Institute	Pre-Clinical
Unkno wn	Unknown	Doherty Institute	Pre-Clinical
Unknown	Unknown	Tulane University	Pre-Clinical

Source: WHO

Status of therapy development Globally multiple therapies are being studied for COVID 19. Some of these therapy approaches and their status (3) is given in Table 3. Table 3: COVID 19 Type of treatments and Status

Treatmment	Developer Organization	Current Stage of Development
ANTIBODIES		
Treatment (TAK-888; anti- SARSCoV-2 polyclonal hyperimmune globulin (H-IG), antibodies from recovered patients)	Takeda	Pre-clinical
Treatment (antibodies from mice; REGN3048-3051)	Regeneron	Pre-clinical
Treatment (antibody from recovered patients)	Celltrion	Pre-clinical
Treatment (anti-corona (COVID-19) IgG from recovered patients)	Kamada	Pre-clinical
Treatment (antibodies from recovered patients)	Vir Biotech/WuXi Biologics/Biogen	Pre-clinical
Treatment (antibodies from recovered US patient)	Lilly/Ab-Cellera (NIH Vaccines Research Ctr)	Pre-clinical
Treatment (Avastin (bevacizumab))	Numerous trials with Chinese research sponsors; Roche	Clinical
Treatment (PD-1 blocking antibody; Thymosin)	Southeast University, China	Clinical

KnowGenix Insights

Treatment (leronlimab (PRO 140), a	CytoDyn	Pre-clinical
CCR5 antagonist)	5 5	
Treatment (camrelizumab)	Southeast University, China	Clinical
Treatment (Kevzara (sarilumab))	Sanofi/Regeneron	Clinical
Treatment (Actemra (tocilizumab))	First People's Hospital of University of Science and Technology of China	Clinical
Treatment (antibodies)	ImmunoPrecise Antibodies	Pre-clinical
Treatment (antibodies)	AstraZeneca	Pre-clinical
ANTIVIRALS		
Treatment (Favilavir/Favipiravir/T-	Fujifilm Toyama	Clinical
705/Avigan,licensed in Japan to	Chemical/Zhejiang Hisun	
treat influenza	Pharmaceuticals numerous	
	trials with Chinese research sponsors	
Treatment (Kaletra	AbbVie/Chinese hospital	Clinical
(lopinavir/ritonavir) and Aluvia)	testing	Chinear
Treatment (remdesivir;	Gilead	Clinical and
investigational drug)		expanded access
Treatment (Prezcobix	Chinese hospital testing	Clinical
(darunavir/cobicistat); Janssen)		
Treatment (galidesivir)	BioCryst Pharmaceuricals	Pre-clinical
Treatment (ebastine; lopinavir; interferon alpha)	Wuhan Red Cross Hospital	Clinical
Treatment (Ganovo (danoprevir);	Numerous trials with	Clinical
ritonavir; interferon)	Chinese research sponsors	
Treatment (Truvada; emtricitabine	Sichuan Academy of	Clinical
and tenofovir)	Medical Sciences &	
	Sichuan Provincial	
Treatment (Arbidal: uniformatic)	People's Hospital Numerous trials with	Clinical
Treatment (Arbidol; umifenovir) licensed in Russia and China for	Chinese research sponsors	Chinical
treatment of respiratory viral	chinese research sponsors	
infections		
Treatment (Xofluza (baloxavir	The First Hospital	Clinical
marboxil), Roche)	Affiliated to Zhejiang	
	University's Medical	
	School	
Treatment (azvudine)	Henan Provincial People's	Clinical
	Hospital	
CELL-BASED THERAPIES		
Treatment (PLX cell product,	Pluristem	Pre-clinical
placenta-based cell therapy)	Therapeutics/BIH Ctr for	

	Decementing TI /	
	Regenerative Therapy/	
	Berlin Ctr for Advanced	
	Therapies	
Treatment (mesenchymal stem	Numerous trials with	Clinical
cells)	Chinese research sponsors	
Treatment (Ryoncil (remestemcel-	Mesoblast	Pre-clinical
L), allogenic mesenchymal stem		
cells)		
RNA BASED TREATMENTS		
Treatment (RNAi - testing 150	Sirnaomics	Pre-clinical
RNAis)		
Treatment (siRNA candidates)	Vir Biotech/Alnylam	Pre-clinical
	Pharmaceuticals	
Treatment (Ampligen;	AIM ImmunoTech/	Pre-clinical
(rintatolimod))	National Institute of	
	Infectious Diseases in	
	Japan	
SCANNING COMPOUNDS TO	- vupun	
REPURPOSE		
Treatment (scanning library of anti-	Janssen Pharmaceutical	Pre-clinical
viral compounds)	Companies	i ie einnear
Treatment (scanning compounds to	Novartis	Pre-clinical
repurpose)		I IC-cinical
Treatment (scanning anti-viral	Pfizer	Pre-clinical
compounds previously in	I IIZCI	I IC-CIIIICai
development)		
Treatment (scanning compounds to	Merck	Pre-clinical
	WIEICK	rie-cinicai
repurpose)	Mataria Madias/Cualias	Pre-clinical
Treatment (repurposing antiviral	Materia Medica/Cyclica	Pre-clinical
drug candidates)		Due all'alteri
Treatment (screening new drugs +	Enanta Pharmaceuticals	Pre-clinical
library of antiviral compounds)		D 1' ' 1
Treatment (screening drug	Southwest Research	Pre-clinical
compounds)	Institute	D 11 1 1
Treatment (scanning compounds to	Takeda	Pre-clinical
repurpose)		
OTHERS		
Treatment (washed microbiota	The Second Hospital of	Clinical
transplantation)	Nanjing Medical	
	University	
Treatment (corticosteroids)	Peking Union Medical	Clinical
	College Hospital	
Treatment (hydroxychloroquine),	Numerous trials with	Clinical
antimalarial	research sponsors in China;	
	University of Minnesota;	
	University of Oxford	
	Chivelony of Oxford	<u> </u>

Treatment (Jakafi/jakavi	Department of	Clinical
(ruxolitinib))	Hematology, Tongji	Chinicai
(ruxontinio))	Hospital, Tongji Medical	
	College, Huazhong	
	University of Science and	
	Technology	
Treatment (PegIntron, Sylatron,	Wuhan Jinyintan Hospital	Clinical
IntronA)	(Wuhan Infectious	Chinear
	Diseases Hospital)	
Treatment (Novaferon, Nova)	The First Affiliated	Clinical
licensed in China for Hep B	Hospital of Medical	
	College of Zhejiang	
	University	
Treatment (recombinant ACE2)	The First Affiliated	Clinical
	Hospital of Guangzhou	
	Medical University	
Treatment (Cerocal (ifenprodil),	Algernon Pharmaceuticals	Pre-clinical
NP-120)	-	
Treatment (APN01; recombinant	University of British	Clinical
soluble human Angiotensin	Columbia/Apeiron	
Converting Enzyme 2)	Biologics	
Treatment (Brilacidin, a defensin	Innovation	Pre-clinical
mimetic)	Pharmaceuticals	
Treatment (BXT-25; glycoprotein)	Bioxytran	Pre-clinical
Treatment (peptides)	CEL-SCI	Pre-clinical
Treatment (ASC09)	Ascletis	Clinical
Treatment (Gilenya (fingolimod);	First Affiliated Hospital	Clinical
Novartis)	of Fujian Medical	
	University	
Treatment (unknown)	Mateon Therapeutics	Pre-clinical
Treatment (unknown)	NanoViricides	Pre-clinical
VACCINES		
Vaccine (DNA plasmid; INO-4800)	Inovio Pharmaceuticals/	Pre-clinical
	Beijing Advaccine	
	Biotechnology	
Vaccine (DNA)	Takis/Applied DNA	Pre-clinical
	Sciences/Evvivax	
Vaccine (DNA plasmid)	Zydus Cadila	Pre-clinical
Vaccine (deoptimized live	Codagenix/Serum	Pre-clinical
attenuated virus)	Institute of India	
Vaccine (non replicating viral	GeoVax/BravoVax	Pre-clinical
vector; MVA encoded VLP)		
Vaccine (non replicating viral	Janssen Pharmaceutical	Pre-clinical
vector; Ad26 (alone or with MVA	Companies/Beth Israel	
boost))	Deaconess Medical	
	Center (BIDMC)	
Vaccine (non replicating viral	University of Oxford	Pre-clinical

vector; ChAdOx1)		
Vaccine (non replicating viral	Altimmune	Pre-clinical
vector; adenovirus based		
NasoVAX)		
Vaccine (non replicating viral	Greffex	Pre-clinical
vector; Ad5 S (GREVAX TM		
platform))		
Vaccine (non replicating	Vaxart	Pre-clinical
viral vector; Oral Vaccine		
platform)		
Vaccine (non replicating viral	CanSino Biologics	Pre-clinical
vector; Viralvectored based)		
Vaccine (protein subunit;	ExpreS2ion	Pre-clinical
Drosophila S2 insect cell expression		
system VLPs)		
Vaccine (protein subunit; S protein)	WRAIR/USAMRIID	Pre-clinical
Vaccine (protein subunit; S trimer)	Clover Biopharmaceuticals	Pre-clinical
	Inc./GSK	
Vaccine (protein subunit; Ii-Key	Generex/EpiVax	Pre-clinical
peptide)		
Vaccine (protein subunit; S protein)	EpiVax/Univ. of Georgia	Pre-clinical
Vaccine (protein subunit; S protein,	Sanofi Pasteur	Pre-clinical
baculovirus production)		
Vaccine (protein subunit; Full	Novavax	Pre-clinical
length S trimers/ nanoparticle +		
Matrix M)		
Vaccine (protein subunit; S protein	University of	Pre-clinical
clamp)	Queensland/GSK	
Vaccine (protein subunit; S1 or	Baylor, New York Blood	Pre-clinical
RBD protein)	Center, Fudan University	
Vaccine (protein subunit; Subunit	iBio/CC-Pharming	Pre-clinical
protein, plant produced)		
Vaccine (replicating viral vector;	Zydus Cadila	Pre-clinical
measles vector)		
Vaccine (replicating viral vector;	Institute Pasteur	Pre-clinical
measles vector)		
Vaccine (replicating viral vector;	Tonix Pharma/Southern	Pre-clinical
horsepox vector; TNX-1800)	Research	
Vaccine (RNA; mRNA)	China CDC/Tongji	Pre-clinical
	University/Stermina	
Vaccine (RNA; mRNA; mRNA 1273)	Moderna/NIAID	Pre-clinical
Vaccine (RNA; mRNA)		
vaccine (INIA, IIINIA)	Arcturus/Duke-NUS	Pre-clinical
		Pre-clinical Pre-clinical
Vaccine (RNA; saRNA)	Imperial College London	Pre-clinical

	Pharma/Pfizer	
Vaccine (unknown)	University of Pittsburgh	Pre-clinical
Vaccine (unknown)	University of	Pre-clinical
	Saskatchewan	
Vaccine (unknown)	ImmunoPrecise	Pre-clinical
Vaccine (modified infectious	MIGAL Galilee Research	Pre-clinical
bronchitis virus vaccine)	Institute	
Vaccine (unknown)	Doherty Institute	Pre-clinical
Vaccine (unknown)	Heat Biologics	Pre-clinical
Vaccine (unknown)	Tulane University	Pre-clinical
Vaccine (unknown)	ImmunoPrecise Antibodies	Pre-clinical
Vaccine (unknown)	AJ Vaccines	Pre-clinical

Vaccine development: Perils

As governments and industry increase the pressure on vaccine researchers to fast track vaccine development, it is vital for them to ensure that their target candidate des not lead to a counter productive and far more dangerous phenomenon known as immune system reaction known as immune enhancement (4).

In the past there have been instances where vaccines lead to immune systems malfunctions; hence it is important to validate if similar types of malfunctions do not occur in vaccines under development. Gaining insights into how immune system reacts not only with the pathogen but with vaccine itself is vital while developing a safe vaccine.

Through 60s to now tests of vaccines for respiratory syncytial virus; severe acute respiratory syndrome (SARS) have shown contrarian trends. Animals and human beings or people who received the vaccine and were later exposed to the virus developed more severe disease than those who had not been vaccinated (5).

The vaccine primed immune system, in certain cases, seemed to launch a unexpected response to the natural infection. This is also called immune enhancement and it may manifest in different ways such as antibody-dependent enhancement (ADE), a process in which a virus leverages antibodies to aid infection; or cell-based enhancement, a category that includes allergic inflammation caused by Th2 immunopathology.

Scientific debate is underway as to which, if any, of these phenomena—for which exact mechanisms remain unclear—could be at play with the novel coronavirus and just how they might affect the success of vaccine candidates. It is critical that animal experiments and human clinical trials of candidate vaccines for COVID-19, is subjected to very careful assessment of possible immune breakdown before taking it to markets. Risks arising from such immune compromise can be immense.

In summing up

There are no effective vaccines or specific antiviral drugs for COVID-19. Hence, the emphasis is to rely exclusively on enforcing strict preventive and control measures that minimize the risk of possible disease transmission. Results obtained from the recently

conducted in vitro study against COVID-19 are promising since the drugs remdesivir and chloroquine were found to be highly effective in controlling the infection.

Direct clinical trials can be conducted among the patients infected with COVID-19 since these drugs are being used for treating other diseases and have well-established safety profiles, making the further evaluation of these drugs much easier.

S protein is considered a key viral antigen for developing CoV vaccines, as shown in several preclinical studies. Although research is in progress to improve prevention, treatment, and control of COVID-19, the documented clinical data on different therapeutic approaches for CoVs are scarce. Most of the therapeutic options are based on previous experiences in treating SARS- and MERS-CoV.

Outbreaks happens once in a while and demand for vaccines last only for short time periods; a reason for the relative lack of interest among the pharmaceutical companies. By the time a new drug or vaccine is developed, there might not be any patients for clinical trials and also no meaningful market for newly discovered drugs.

There are now at least a half-dozen candidates, including live viruses, recombinant protein subunits, and nucleic acids that may ultimately offer promise as preventive vaccines against COVID-19. These will require additional manufacturing steps and formal toxicology testing before submitting a regulatory package to national regulatory agencies. Only then commencement of the clinical development, first with phase 1 clinical trials for safety and immunogenicity, and later, phase 2 and phase 3 trials for both safety and efficacy.

It must be kept in mind that a new major coronavirus epidemic has happened every decade in the twenty-first century—SARS in the 2000s, MERS in the 2010s, and now COVID-19. It is a global security priority to advance and stockpile coronavirus vaccines. This will need a funding mechanism to support their development, testing, and manufacture, and storage.

A global health initiative was launched late April 2020 by WHO, <u>Access to COVID-19</u> <u>Tools (ACT) Accelerator</u>, will accelerate the development, production and deployment of safe and effective diagnostics, therapeutics and vaccines against COVID – making them accessible and affordable to all.

This pandemic is a clarion call for all to not only react but also prepare for the next coronavirus crossing from wild bats, primates and rodents into mammals. With vaccine researchers, epidemiologists, immunologists and the medical community being challenged as never before disruptive thinking is needed to come up with solutions hitherto never thought of.

References:

1. Kuldeep Dhama, Khan Sharun, Ruchi Tiwari, Maryam Dadar, Yashpal Singh Malik, Karam Pal Singh & Wanpen Chaicumpa (2020): COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing

vaccines, immunotherapeutics, and therapeutics, Human Vaccines & Immunotherapeutics, DOI: 10.1080/21645515.2020.1735227

- 2. Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013;11(12):836–48. doi:10.1038/nrmicro3143.
- 3. Source : Milken Institute COVID 19 Treatment and Vaccine Tracker; WHO list, March 2020
- 4. Lynne Peeples, www.pnas.org/cgi/doi/10.1073/pnas.2005456117
- 5. S. M. Tirado, K. J. Yoon, Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 16, 69–86 (2003).

Author: R.Rajagopal